当前位置:首页 -> 高考数学

2017高考数首轮考点训练-算法初步与框图..

第十二章 算法初步与框图、推理与证明
考纲链接


1.算法的含义、程序框图
(1)了解算法的含义,了解算法的思想.
(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.
2.基本算法语句
了解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.
3.框图
(1)通过具体实例进一步认识程序框图.
(2)通过实例了解工序的流程图.
(3)能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用.

(4)通过实例了解结构图.
(5)会运用结构图梳理已学过的知识结构、整理收集到的信息资料.
4.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会合情推理在数学发现中的作用.
5.了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运用“三段论”进行一些简单的演绎推理.
6.了解直接证明的两种基本方法:综合法和分析法;了解综合法和分析法的思考过程和特点.
7.了解反证法的思考过程和特点.
§12.1 算法、程序框图、结构图

1.算法的概念及特点
(1)算法的概念
在数学中,算法通常是指按照一定______解决某一类问题的________和________的步骤.
(2)算法的特点之一是具有______性,即算法中的每一步都应该是确定的,并能有效地执行,且得到确定的结果,而不应是模棱两可的;其二是具有______性,即算法步骤明确,前一步是后一步的前提,只有执行完前一步才能进行后一步,并且每一步都准确无误才能解决问题;其三是具有______性,即一个算法应该在有限步操作后停止,而不能是无限的;另外,算法还具有不唯一性和普遍性,即对某一个问题的解决不一定是唯一的,可以有不同的解法,一个好的算法应解决的是一类问题而不是一两个问题.
2.程序框图
(1)程序框图的概念
程序框图又称流程图,是一种用________、________及________来表示算法的图形.
(2)构成程序框图的图形符号、名称及其功能
图形符号 名称 功  能

①      表示一个算法的起始和结束

②      表示一个算法输入和输出的信息

③      赋值、计算

④      判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”

⑤      连接程序框
○ ⑥      连接程序框图的两部分
3.结构图
结构图一般由构成系统的若干要素和表达各要素之间关系的连线(或方向箭头)构成.
4.算法的基本逻辑结构
(1)顺序结构


顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按__________的顺序进行的.它是由若干个__________的步骤组成的,它是任何一个算法都离不开的基本结构.顺序结构可用程序框图表示为如图所示的形式.
(2)条件结构
在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.常见的条件结构可以用程序框图表示为如图所示的两种形式.

(3)循环结构
在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是________.反复执行的步骤称为________.
循环结构有如下两种形式:
①如图1,这个循环结构有如下特征:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.因此,这种循环结构称为____________.
②如图2表示的也是常见的循环结构,它有如下特征:在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环.因此,这种循环结构称为____________.

自查自纠:
1.(1)规则 明确 有限 (2)确定 有序 有穷
2.(1)程序框 流程线 文字说明
(2)①终端框(起止框) ②输入、输出框 
③处理框(执行框) ④判断框 ⑤流程线 ⑥连接点
4.(1)从上到下 依次执行 (3)循环结构 循环体  ①直到型循环结构 ②当型循环结构

 下列各式中的S值不可以用算法求解的是(  )
A.S=1+2+3+4
B.S=12+22+32+…+1002
C.S=1+12+13+…+110000
D.S=1+2+3+4+…
解:由算法的有限性知,D不正确,而A,B,C都可以通过有限步骤操作,输出确定结果,故选D.
 给出下列算法:
第一步,输入正整数n(n>1).
第二步,判断n是否等于2,若n=2,则输出n;若n>2,则执行第三步.
第三步,依次从2到n-1检验能不能整除n,若不能整除n,则执行第四步;若能整除n,则执行第一步.
第四步,输出n.
则输出的n的值是(  )
A.奇数  B.偶数  C.质数  D.合数
解:根据算法可知n=2时,输出n的值为2;若n=3,输出n的值为3;若n=4,2能整除4,则重新输入n的值,…,故输出的n的值为质数.故选C.
 (2014北京)执行如图所示的程序框图,输出的S值为(  )

A.1  B.3  C.7  D.15
解:由程序框图知:S=1+21+22=7.故选C.
 (2014辽宁)执行下面的程序框图,若输入x=9,则输出y=____________.

解:输入x=9,则y=5,|y-x|=4>1,不满足条件;x=5,y=113,|y-x|=43>1,不满足条件;x=113,y=299,|y-x|=49<1,满足条件,输出y=299.故填299.
 如图所示,程序框图(算法流程图)的输出结果是__________.

解:初始值s=0,n=2.第一次循环得s=12,n=4;第二次循环得s=12+14,n=6;第三次循环得s=12+14+16=1112,n=8,此时退出循环,输出的s=1112.故填1112.


类型一 算法的概念
 下列语句是算法的个数为(  )
①从济南到巴黎:先从济南坐火车到北京,再坐飞机到巴黎;
②统筹法中“烧水泡茶”的故事;
③测量某棵树的高度,判断其是否为大树;
④已知三角形的两边及夹角,利用三角形的面积公式求出该三角形的面积.
A.1    B.2    C.3    D.4
解:①中勾画了从济南到巴黎的行程安排,完成了任务;②中节约时间,烧水泡茶完成了任务;③中对“树的大小”没有明确的标准,无法完成任务,不是有效的算法构造;④是纯数学问题,利用三角形的面积公式求出三角形的面积.故选C.

点拨:
算法过程要做到一步一步地执行,每一步执行的操作必须确切,不能含糊不清,且在有限步后必须得到问题的结果.

 下列叙述能称为算法的个数为(  )
①植树需要运苗、挖坑、栽苗、浇水这些步骤;
②顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100;
③从宜昌乘火车到武汉,从武汉乘飞机到北京;
④3x>x+1;
⑤求所有能被3整除的正数,即3,6,9,12,….
A.2  B.3  C.4  D.5
解:①②③可称为算法,④⑤不是,故选B.

类型二 经典算法
 “韩信点兵”问题.韩信是汉高祖刘邦手下的大将,为了保守军事机密,他在点兵时采用下述方法:先令士兵从1~3报数,结果最后一个士兵报2;再令士兵从1~5报数,结果最后一个士兵报3;又令士兵从1~7报数,结果最后一个士兵报4.这样,韩信很快就知道了自己部队士兵的总人数.请设计一个算法,求出士兵至少有多少人.
解:在本题中,士兵从1~3报数,最后一个士兵报2,说明士兵的总人数是除以3余2,其他两种情况依此类推.
(算法一)步骤如下:
第一步:先确定最小的满足除以7余4的数是4;
第二步:依次加7就得到所有满足除以7余4的数:4,11,18,25,32,39,46,53,60,…;
第三步:在第二步所得的一列数中确定最小的满足除以5余3的正整数:18;
第四步:依次加上35,得18,53,88,…;
第五步:在第四步得到的一列数中,找到最小的满足除以3余2的正整数:53,这就是我们要求的数.
(算法二)步骤如下:
第一步:先确定最小的满足除以3余2的数是2;
第二步:依次加3就得到所有满足除以3余2的数:2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,…;
第三步:在第二步所得的一列数中确定最小的满足除以5余3的正整数:8;
第四步:然后依次加15就得8,23,38,53,…,不难看出,这些数既满足除以3余2,又满足除以5余3;
第五步:在第四步所得的一列数中找到满足除以7余4的最小数是53,这就是我们要求的数.

点拨:
给出一个问题,设计算法时要注意:(1)认真分析问题,研究解决此问题的一般方法;(2)将解决问题的过程分解成若干步骤;(3)用简练的语言将各步骤表示出来;(4)把解题过程条理清楚地表达出来,就得到一个明确的算法.对于同一问题,可以设计不同的算法,其最终的结果是一样的,但解决问题的繁简程度不同,我们要寻找最优算法.

 一位商人有9枚银元,其中有一枚略轻的是假银元.请设计一种算法,用天平(不用砝码)将假银元找出来.
解:算法如下:
第一步:把银元分成3组,每组3枚;
第二步:先将两组分别放在天平的两边,如果天平不平衡,那么假银元就在轻的那一组;如果天平左右平衡,则假银元就在未称的第3组内;
第三步:取出含假银元的那一组,从中任取两枚银元放在天平的两边.如果左右不平衡,则轻的那一边就是假银元;如果天平两边平衡,则未称的那一枚就是假银元.
类型三 顺序结构
 已知点P(x0,y0)和直线l:Ax+By+C=0,求点P(x0,y0)到直线l的距离d,写出其算法并画出流程图.
解:算法如下:
第一步:输入x0,y0及直线方程的系数A,B,C.
第二步:计算z1=Ax0+By0+C.
第三步:计算z2=A2+B2.
第四步:计算d=z1z2.
第五步:输出d.
流程图如图所示.

点拨:
顺序结构是一种最简单、最基本的结构,可严格按照传统的解题思路写出算法步骤,画出程序框图.注意语句与语句之间,框与框之间是按从上到下的顺序进行的.

 阅读如图所示的程序框图,若输入的a,b,c的值分别是21,32,75,则输出的a,b,c分别是(  )

A.75,21,32  B.21,32,75
C.32,21,75  D.75,32,21
解:该程序框图的执行过程是:输入21,32,75;x=21;a=75;c=32;b=21;输出75,21,32.故选A.
类型四 条件结构
 (2015深圳调研)执行如图所示的程序框图,如果依次输入函数:f(x)=3x,f(x)=sinx,f(x)=x3,f(x)=x+1x,那么输出的函数f(x)为(  )

A.f(x)=3x   B.f(x)=sinx
C.f(x)=x3   D.f(x)=x+1x
解:依题意得,输出的函数应满足:f(-x)=-f(x)(x∈R),即函数f(x)是定义在R上的奇函数,且f(x+m)>f(x),其中m>0,即函数f(x)是定义在R上的增函数.对于A,函数f(x)=3x不是奇函数;对于B,函数f(x)=sinx不是定义在R上的增函数;对于C,函数f(x)=x3既是奇函数又是定义在R上的增函数;对于D,函数f(x)=x+1x的定义域不是实数集.综上所述,只能输出f(x)=x3,故选C.

点拨:
条件结构的运用与数学的分类讨论有关.设计算法时,哪一步要分类讨论,哪一步就需要用条件结构.

 (2015栠国卷Ⅱ)如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=(  )

A.0  B.2  C.4  D.14
解:执行该程序,输入a,b的值依次为a=14,b=18;a=14,b=4;a=10,b=4;a=6,b=4;a=2,b=4;a=b=2,此时退出循环,输出的a=2.故选B.
类型五 循环结构
 (2014褠徽)如图所示,程序框图(算法流程图)的输出结果是(  )

A.34  B.55  C.78  D.89
解:运行程序:x=1,y=1,z=2;x=1,y=2,z=3;x=2,y=3,z=5;x=3,y=5,z=8;x=5,y=8,z=13;x=8,y=13,z=21;x=13,y=21,z=34;x=21,y=34,z=55,跳出循环,输出结果是55.故选B.

点拨:
如果算法问题里涉及的运算进行了许多次重复的操作,且先后参与运算的数之间有相同的规律,就可引入变量循环参与运算(我们称之为循环变量),应用循环结构.在循环结构中,要注意根据条件设计合理的计数变量、累加和累乘变量及其个数等,特别要使条件的表述恰当、准确.

 (2015唠羖)根据下边的框图,当输入x为2006时,输出的y=(  )

A.28  B.10  C.4  D.2
解:初始条件:x=2006.第1次运行:x=2004;第2次运行:x=2002;第3次运行:x=2000;…;第1003次运行:x=0;第1004次运行:x=-2,不满足条件,跳出循环,所以输出的y=32+1=10,故选B.
类型六 结构图
 总结高中所有有关函数的内容,画出知识结构图.
解:如图所示:

点拨:
画结构图时,首先要确定组成结构图的基本要素,然后通过连线来标明各要素之间的关系.

 某公司的组织结构是:总经理之下设执行经理、人事经理和财务经理.执行经理领导生产经理、工程经理、品质管理经理和物料经理.生产经理领导线长,工程经理领导工程师,工程师管理技术员,物料经理领导计划员和仓库管理员.
解:如图所示:

1.设计算法时,要根据题目进行选择,以简单、程序短、易于在计算机上执行为原则.
2.画程序框图首先要进行结构选择,套用格式.若求只含有一个关系式的函数的函数值时,只用顺序结构就能够解决;若是分段函数或执行时需要先判断才能执行后继步骤的,就必须引入条件结构;如果问题涉及的运算进行了许多重复的步骤,有规律,就可引入变量,应用循环结构.当然,应用循环结构一定要用到顺序结构与条件结构.
3.循环结构的循环控制
通过累加变量记录循环次数,通过判断框决定循环终止与否.用循环结构来描述算法,在画出算法程序框图之前,需要确定的三件事是:(1)确定循环变量与初始条件;(2)确定循环体;(3)确定终止条件.注意直到型循环与当型循环的区别,二者判断框内的条件表述在解决同一问题时恰好相反.解决循环结构框图问题,当循环次数比较少时,可依次列出;当循环次数较多时,可先循环几次,找出规律.要特别注意最后输出的是什么,不要出现多一次或少一次循环的错误.
4.在具体绘制程序框图时,要注意以下几点:
(1)流程线上要标有执行顺序的箭头.
(2)判断框后边的流程线应根据情况标注“是(Y)”或“否(N)”.
(3)框图内的内容包括累加(积)变量初始值,计数变量初始值,累加值,前后两个变量的差值都要仔细斟酌,不能有丝毫差错.
(4)判断框内条件常用“>”“≥”“<”“≤”“=”等符号,它们的含义是各不相同的,要根据所选循环结构的类型,正确地进行选择.
5.结构图与流程图的异同
相同点:绘制结构图的一般步骤与绘制流程图类似,先确定组成系统的基本要素,以及这些要素之间的关系,然后画出框图表示整个系统.
不同点:流程图描述具有时间特征的动态过程,结构图刻画静态的系统结构.流程图通常会有一个“起点”,一个或多个“终点”,其基本单元之间由流程线连接;结构图则更多地表现为“树”形结构,其基本要素之间一般为概念上的从属关系或逻辑上的先后关系.
                      

1.结合下面的算法:
第一步:输入x.
第二步:判断x是否小于0,若是,则输出x+2,否则执行第三步.
第三步:输出x-1.
当输入的x的值为-1,0,1时,输出的结果分别为(  )
A.-1,0,1  B.-1,1,0
C.1,-1,0  D.0,-1,1
解:根据x值与0的关系,选择执行不同的步骤,当x的值为-1,0,1时,输出的结果分别为1,-1,0,故选C.
2.如图的程序框图输出的结果是(  )

A.4  B.3  C.2  D.0
解:该算法首先将1,2,3三个数分别赋给x,y,z;然后先让x取y的值,即x变成2,再让y取x的值,即y的值是2,接着让z取y的值,即z的值为2,从而最后输出z的值为2.故选C.
3.(2014嘠坮)执行如图所示的程序框图,如果输入的t∈[-2,2],则输出的S属于(  )

A.[-6,-2]   B.[-5,-1]
C.[-4,5]   D.[-3,6]
解:由程序框图可得
S=2t2+1-3,t∈[-2,0),t-3,t∈[0,2],
其值域为[-3,6].故选D.
4.(2015輠建)阅读如图所示的程序框图,运行相应的程序,则输出的结果为(  )

A.2  B.1  C.0  D.-1
解:执行程序,得S=0,i=2;S=-1,i=3;S=-1,i=4;S=0,i=5;S=0,i=6>5,跳出循环,输出S=0.故选C.
5.(2014重庆)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是(  )

A.s>12  B.s>35  C.s>710  D.s>45
解:当输出k的值为6时,s=1×910×89×78=710,结合各选项知,C符合要求.故选C.
6.(2015栠国课标Ⅰ)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=(  )

A.5  B.6  C.7  D.8
解法一:执行程序,S=12,m=14,n=1;S=14,m=18,n=2;S=18,m=116,n=3;S=116,m=132,n=4;S=132,m=164,n=5;S=164,m=1128,n=6;S=1128<t=0.01,m=1256,n=7,循环结束,输出n=7.
解法二:记第n次循环后S的值为ann=0,1,2,…,,其中a0=1,则an=an-1-12n,递推可得an=a0-12+122+…+12n=1-121-12n1-12=12n≤t=0.01.
显然n>6,故n=7.故选C.
7.(2015褠徽)执行如图所示的程序框图(算法流程图),输出的n为________.

解:各次循环中变量a,n的取值如下表所示:
a 1.5 1.4 1.416

n 2 3 4
当a=1.416时,跳出循环,输出的n为4.故填4.
8.(2014嘠北)设a是一个各位数字都不是0且没有重复数字的三位数.将组成a的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=815,则I(a)=158,D(a)=851).阅读如图所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b=________.

解法一:当a=123时,b=321-123=198≠123;
当a=198时,b=981-189=792≠198;
当a=792时,b=972-279=693≠792;
当a=693时,b=963-369=594≠693;
当a=594时,b=954-459=495≠594;
当a=495时,b=954-459=495=a,
终止循环,输出b=495.
解法二:设I(a)=100x+10y+z,D(a)=100z+10y+x,x<y<z,x,y,z∈N*,则D(a)-I(a)=99(z-x),因此各位数字都不是0且没有重复数字,而且是99的倍数的三位数有:198,297,396,495,594,693,792,891,经检验知只有495满足题意.故填495.
9.某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼、羊及青菜三者之一,没有人在的时候,狼会吃羊,羊会吃青菜.请设计安全过河的算法.
解:第一步,人带羊过河.

猜你喜欢